The department offers several programs leading to a BS, including:
CAS students only. SBS students by special permission. Restricted to the following majors: Art History, Asian Studies, Biology, Economics, English, French, History, Humanities, International Economics, Music History, Philosophy, Physics, Radiation Science, Spanish, and Undeclared. Instructor consent required for all other majors.
1.00
This course engages students in the early stages of career planning. Students will explore their interests, skills, values, and strengths, which will allow them to begin setting appropriate goals for professional development. Once students understand themselves in relation to the world of work, they will learn how to research careers and employment paths that fit with their goals.
MATH121, MATH165 or MATH164 and PHYS L151 concurrently
3.00
PHYS 151 is the first of three courses (PHYS 151, 152, 153) that comprise the calculus based introductory physics sequence at Suffolk University intended for students majoring in the physical sciences, engineering and mathematics. This course aims to teach basic techniques in physics that fall under the topic of classical mechanics and their application in understanding the natural world. Specific topics include the study of vectors, Newton's laws, rotations, rigid body statics and dynamics, fluid mechanics, simple harmonic motion, mechanical waves, sound and hearing. The student will learn how to analyze physical situations by using simple models, and also how to solve those models and derive useful conclusions from them. This course will show students how experimental results and mathematical representations are combined to create testable scientific theories, and how the complexities of most reallife physical situations can be reduced to simple problems by identifying the essential physical features and ignoring the rest. The student will learn to distinguish the scientific approach to physical situations from other ways of looking at them, for example, artistic, humanistic, and business.
Offered Both Fall and Spring
SCI TECH ENGNR
PHYS 151 concurrently
1.00
The laboratory consists of experiments to illustrate the basic concepts studied in the course: measurements, propagation of errors, vectors, Newton's laws, work and energy, momentum, rotations, oscillations, simple harmonic motion, fluid. Knowledge of algebra, trigonometry, differentiation and integration required.
Offered Both Fall and Spring
SCI TECH ENGNR
PHYS151 and PHYSL151. Must be taken concurrently with PHYSL152.
3.00
This calculus based course begins with topics in kinetic theory and the laws of thermodynamics. It then covers electric charge and field, Gauss' law, electrical potential and capacitance, electric currents and DC circuits. Next magnetism, electromagnetic induction, Faraday's law and AC circuits are discussed. This is followed by Maxwell's equations, electromagnetic waves, and properties of light.
Offered Both Fall and Spring
SCI TECH ENGNR
PHYS 151 and L151 and PHYS 152 must be taken concurrently
1.00
The laboratory consists of experiments to illustrate the basic concepts studied in the course: heat, gas laws, electric forces, field, and potential, DC and AC circuits, magnetic field, electromagnetic induction, Faraday's law, optics. Calculus, algebra, trigonometry are required. Error propagation, use of Excel, laboratory notebooks, and formal reports required.
Offered Both Fall and Spring
SCI TECH ENGNR
MATH121, MATH164, or MATH165; PHYS151; PHYSL153 concurrently
3.00
This calculusbased course is the introduction of the topics of modern physics. It begins with special relativity, the Lorentz transformation, relativistic momentum and energy, addition of relativistic velocities, then covers early quantum theory, blackbody radiation, photoelectric effect, the Compton effect, photon interactions, pair production, and the Bohr theory of the atom. Then Schrodinger's equation is introduced with use of wave functions, particle box, barrier penetration, quantum mechanical tunneling, the Pauli Exclusion principle, the development of the periodic table, and the Xray spectra. Development of solid state physics with bonding in molecules, band theory of solids and semiconductor behavior. The final topics cover nuclear physics, radioactivity, halflife, nuclear fission and fusion, medical uses of radiation, elementary particle physics and introduction to astrophysics.
Offered Fall Term
SCI TECH ENGNR
PHYS153 concurrently
1.00
The laboratory consists of experiments to illustrate the basic concepts of special relativity, the Lorentz transformation, relativistic momentum and energy, addition of relativistic velocities, then covers early quantum theory, blackbody radiation, photoelectric effect, the Compton effect, photon interactions, pair production, and the Bohr theory of the atom.
SCI TECH ENGNR
PHYS 152 ; MATH 265 which may be taken concurrently
4.00
Newton's laws of motion, projectiles, momentum, energy, conservation laws, oscillations, Lagrange equations, generalized momenta, central forces, orbits. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Fall Term
Senior Standing
4.00
The senior project is the capstone research experience of the undergraduate Physics Major. This one semester course requires students to work one on one with faculty in an area of mutually agreed upon research. In general, the effort will involve the use of mathematical and programming skills, laboratory techniques, and possibly field work. The end result will be both a paper and a formal presentation to both faculty and students.
Offered Spring Term
PHYS153;
4.00
Topics include atoms and elementary particles, atomic, molecular and nuclear systems. Quantum states and probability amplitude, wave mechanics and thermal properties of matter. Atomic spectra and structure, and molecular systems. Nuclear reactions, alpha and beta decay and high energy physics. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Fall Term
PHYS152, PHYSL152, PHYS153, PHYSL153, and PHYS361
4.00
Macroscopic objects are made up of huge numbers of fundamental particles whose interactions are well understood. Physical properties that emerge from these interactions are, however, not simply related to these fundamental interactions. In this course we will develop the tools of statistical physics, which will allow us to predict emergent cooperative phenomena. We will apply those tools to a wide variety of physical questions, including the behavior of glasses, polymers, heat engines, magnets, and electrons in solids. Computer simulations will be extensively used to aid visualization and provide concrete realization of models in order to impart deeper understanding of statistical physics.
Take PHYS152 and PHYSL152
4.00
Electrostatic field energy, methods for solution of boundary value problems. The magnetostatic field and magnetic circuits. Electromagnetic field energy, plane waves, wave guides and cavity resonators. Interaction of charge particles with electromagnetic fields. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Fall Term
PHYS 451
2.00
Classical and modern experiments in physics; Experiments may include Frank Hertz experiment, Hall effect, nuclear magnetic resonance, quantum dots, detection of muons, xray spectroscopy, ellipsometry, physics of timbre of musical instruments, data acquisition.
Offered Fall Term
Take MATH121, MATH164, or MATH165 (previous or concurrent)
4.00
This is a rigorous introduction to computer science in Java with an emphasis on problem solving, structured programming, objectoriented programming, and graphical user interfaces. Topics include expressions, input/output, control structures, intrinsic data types, classes and methods, iteration, topdown programming, arrays, graphical user interfaces, and elements of UML. Normally offered each semester.
MATH121 with a minimum grade of C, MATH075, or MATH level 5
4.00
Functions, limits and continuity, squeeze theorem, limits at infinity; instantaneous rate of change, tangent slopes, and the definition of the derivative of a function; power, product, and quotient rules, trig derivatives, chain rule, implicit differentiation; higher order derivatives; derivatives of other transcendental functions (inverse trig functions, exponential and log functions, hyperbolic trig functions); applications of the derivative (implicit differentiation, related rates, optimization, differentials, curve sketching, L'Hopital's rule); antiderivatives; indefinite integrals; Fundamental Theorem; applications (net change). 4 lecture hours plus 1 recitation session each week. Normally offered each semester.
MATH164 or MATH165 with a minimum grade of C
4.00
Riemann sums and definite integrals; Fundamental Theorem; applications (areas); integration of exponential functions, trig functions, and inverse trig functions; techniques of integration (substitution, by parts, trig integrals, trig substitution, partial fractions); area, volume, and average value applications; differential equations (separable, exponential growth, linear); improper integrals; infinite sequences and series; convergence tests; power series; Taylor and Maclaurin series (computation, convergence, error estimates, differentiation and integration of Taylor series). 4 lecture hours plus 1 recitation session each week. Normally offered each semester.
MATH 166 with grade of C or better
4.00
Parametric equations and polar coordinates (curves, areas, conic sections); vectors and the geometry of space (the dot product, vector arithmetic, lines and planes in 3space, the cross product, cylinders and quadratic surfaces); vector functions (limits, derivatives and integrals, motion in space); partial derivatives (functions of several variables, limits and continuity, tangent planes and differentials, chain rule, directional derivatives, gradient, extrema, Lagrange multipliers); multiple integrals (double integrals, applications); vector calculus (vector fields, line integrals, fundamental theorem for line integrals, Green's Theorem, curl and divergence, parametric surfaces, surface integrals). 4 lecture hours plus 1 recitation session each week. Normally offered each semester.
MATH265 and PHYS153
4.00
Applications of specific mathematical methods to problems in physics. Topics include complex analysis, integral transforms, eigenvalue problems, partial differential equations and group theory. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Fall Term
Must take BIO L111 concurrently
3.00
Explanation of key biological structures and reactions of the cell. This is an introductory course required of all biology majors and minors, and some nonbiology science majors. This course is not recommended for the nonscience student.
Offered Both Fall and Spring
SCI TECH ENGNR
Concurrently with BIO 111
1.00
Sessions are designed to familiarize the student with biological molecules, and the techniques used in their study. The techniques covered include basic solution preparation, separation and quantification of molecules, enzyme catalysis,and cell isolation.
Offered Both Fall and Spring
SCI TECH ENGNR
Placement at MATH 104 or better. Students who do not place at MATH 104 must take MATH 104 concurrently. Must be taken concurrently with CHEML111.
3.00
Fundamental principles of chemistry are discussed. Introduces atomic structure, stoichiometry, the periodic table, the nature of chemical bonds, and chemical reactions. This course is recommended for science majors or those considering careers in the health sciences.
Offered Both Fall and Spring
SCI TECH ENGNR
MATH104 MATH108 MATH121 MATH128 MATH130 MATH134 MATH164 MATH165 MATHTMPEL1 MATHTMPEL2 or MATHTMPEL3. Must be taken concurrently with CHEM 111.
1.00
Introduces the basic principles of chemistry through discovery laboratory experiments. Learn safe laboratory practices and basic techniques such as determining mass and volume, representing data in the form of tables and graphs, and synthesizing and isolating a metal complex. Participate in workshop activities that include understanding modern approaches to the scientific method, reading and understanding the scientific literature, and building molecular models. This laboratory is designed around the foundational laboratory skills practiced by science students in a wide variety of majors.
Offered Both Fall and Spring
SCI TECH ENGNR
CHEM 111/L111; CHEML112 must be taken concurrently. MATH 104 placement or higher.
3.00
This course is a continuation of General Chemistry I. Fundamental principles of chemistry are discussed. Introduces thermochemistry, gases, solution chemistry, chemical kinetics, chemical equilibrium, acidbase systems, and thermodynamics.
Offered Both Fall and Spring
CHEM111/L111; CHEM112 must be take concurrently. MATH104 placement or higher.
1.00
This course is a continuation of General Chemistry I Laboratory. Apply the basic principles of chemistry through discovery laboratory experiments with an emphasis on quantitative analysis. Execute basic analytical techniques such as the application of Beer's Law and acidbase titrations. This laboratory is designed around the foundational laboratory skills practiced by science students in a wide variety of majors.
Offered Both Fall and Spring
MATH165 or MATH164 with a grade of C or better
4.00
Topics include: random variable and distribution; expectation and variance; special discrete/continuous distributions (uniform, binomial, negative binomial, geometric, hypergeometric, Poisson, normal, and exponential distributions); joint distribution, marginal distribution and conditional distribution; covariance; limit theorems (law of large numbers and central limit theorem); introduction to confidence interval and hypothesis testing; regression analysis. Offered as needed.
MATH265 (may be taken concurrently)
4.00
A first course in differential equations. Topics generally include separable, homogenous, exact, and linear first order differential equations; variations of parameters, differential operators, the Laplace transform, inverse transforms, systems of differential equations, power series solutions, Fourier series, and applications.
Note: Please consult with physics advisor regarding elective choice, as several 200level or higher courses may not apply towards the elective credit requirement.
CMPSC F131
4.00
Computer Science II (CSII) is the continuation of Computer Science I. The purpose of CSII is to expand students' understanding of Computer Science and computer programming, assuming that they have the basic knowledge of the Java language. The course introduce another programming language  C  and also focuses on the pure ObjectOriented features of Java, such as inheritance, polymorphism, and exceptions, as well as on simple data structures (lists, stacks, and queues) and algorithms (searching and sorting). By the end of the semester students will be able to develop sizable (several pages long) computer programs in the C and Java languages. Efficient C and Java program development requires an Integrated Development Environment (IDE)  a collection of tools that make it possible to edit, compile, and debug C and Java programs. Our IDE of choice is Eclipse. Eclipse is free and available for many operating systems, including Microsoft Windows (all flavors), Linux, Unix, and Mac OS X.
Take MATH185 with a grade of C or better
4.00
this course is intended to provide a firm foundation for and a taste of the study of advanced mathematics. While the course content varies somewhat, it is designed to give students a deeper understanding of the algebraic and analytical structure of the integers, the rational numbers and the real numbers and how they act as a building block to a variety of fields of mathematics. Students are introduced to the process of mathematical discovery and the language of mathematics. Exercises and projects are designed to illustrate the need for proof and to further refine the student's ability to analyze, conjecture and write mathematical proofs. This course is a prerequisite for most upper level mathematics courses and, after completing it a student will be in a position to determine realistically if he or she ought to major or minor in mathematics.
Take PHYS152 and PHYSL152; Take PHYSL253 concurrently
3.00
Materials and device structures for applications in analog and digital electronics. Topics include characteristics and basic circuits for diodes, fieldeffect transistors, bipolar junction transistors, operational amplifiers and programmable logic devices.
Take PHYS152 and PHYSL152; Take PHYS253 concurrently
1.00
Materials and device structures for applications in analog and digital electronics. Topics include characteristics and basic circuits for diodes, fieldeffect transistors, bipolar junction transistors, operational amplifiers and programmable logic devices.
PHYS 361
4.00
Mechanics in noninertial frames, rotational motion of rigid bodies, coupled oscillations, nonlinear mechanics and chaos, Hamiltonian mechanics, collision theory, continuum mechanics. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Spring Term
PHYS361
4.00
Nonrelativistic study of particle systems, wave mechanical treatment, development of the concepts of observables, state vectors, operators and matrix representations. Hilbert space, angular momenta, coupling, symmetries, scattering, and perturbation theory. Harmonic oscillator and Hydrogen atom. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once a week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Fall Term
Take PHYS361 and PHYS362
4.00
Nonrelativistic study of particle systems, wave mechanical treatment, development of the concepts of observables, state vectors, operators and matrix representations. Hilbert space, angular momenta, coupling, symmetries, scattering, and perturbation theory. Harmonic oscillator and Hydrogen atom. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Spring Term
Note: Students taking the Astrophysics or Planetry Science concentrations do not need to complete the Advanced Physics requirements.
Residency Requirement Policy: In the College of Arts and Sciences, a twocourse (8 credit) residency requirement must be satisfied for completion of a minor and a fourcourse (16 credit) residency requirement must be satisfied for the completion of a major.
Students may choose a concentration in either Astrophysics or Planetary Science.
The Astrophysics concentration is directed towards students interested in pursuing graduate studies in astrophysics and is run in close collaboration with Suffolk's Madrid campus. Students are required to spend Summer Session I following their junior year in Madrid to take upperlevel courses in astrophysics. These courses will include trips to the Canary Islands to take data at one of the world’s major astronomical observatories, the Tenerife Observatory.
The Planetary Science concentration provides core training in earth and planetary sciences, together with mathematics, applied physics, computational and instrumental technology, needed for professions in the earth and space sciences.
CAS students only. SBS students by special permission. Restricted to the following majors: Art History, Asian Studies, Biology, Economics, English, French, History, Humanities, International Economics, Music History, Philosophy, Physics, Radiation Science, Spanish, and Undeclared. Instructor consent required for all other majors.
1.00
This course engages students in the early stages of career planning. Students will explore their interests, skills, values, and strengths, which will allow them to begin setting appropriate goals for professional development. Once students understand themselves in relation to the world of work, they will learn how to research careers and employment paths that fit with their goals.
MATH121, MATH165 or MATH164 and PHYS L151 concurrently
3.00
PHYS 151 is the first of three courses (PHYS 151, 152, 153) that comprise the calculus based introductory physics sequence at Suffolk University intended for students majoring in the physical sciences, engineering and mathematics. This course aims to teach basic techniques in physics that fall under the topic of classical mechanics and their application in understanding the natural world. Specific topics include the study of vectors, Newton's laws, rotations, rigid body statics and dynamics, fluid mechanics, simple harmonic motion, mechanical waves, sound and hearing. The student will learn how to analyze physical situations by using simple models, and also how to solve those models and derive useful conclusions from them. This course will show students how experimental results and mathematical representations are combined to create testable scientific theories, and how the complexities of most reallife physical situations can be reduced to simple problems by identifying the essential physical features and ignoring the rest. The student will learn to distinguish the scientific approach to physical situations from other ways of looking at them, for example, artistic, humanistic, and business.
Offered Both Fall and Spring
SCI TECH ENGNR
PHYS 151 concurrently
1.00
The laboratory consists of experiments to illustrate the basic concepts studied in the course: measurements, propagation of errors, vectors, Newton's laws, work and energy, momentum, rotations, oscillations, simple harmonic motion, fluid. Knowledge of algebra, trigonometry, differentiation and integration required.
Offered Both Fall and Spring
SCI TECH ENGNR
PHYS151 and PHYSL151. Must be taken concurrently with PHYSL152.
3.00
This calculus based course begins with topics in kinetic theory and the laws of thermodynamics. It then covers electric charge and field, Gauss' law, electrical potential and capacitance, electric currents and DC circuits. Next magnetism, electromagnetic induction, Faraday's law and AC circuits are discussed. This is followed by Maxwell's equations, electromagnetic waves, and properties of light.
Offered Both Fall and Spring
SCI TECH ENGNR
PHYS 151 and L151 and PHYS 152 must be taken concurrently
1.00
The laboratory consists of experiments to illustrate the basic concepts studied in the course: heat, gas laws, electric forces, field, and potential, DC and AC circuits, magnetic field, electromagnetic induction, Faraday's law, optics. Calculus, algebra, trigonometry are required. Error propagation, use of Excel, laboratory notebooks, and formal reports required.
Offered Both Fall and Spring
SCI TECH ENGNR
MATH121, MATH164, or MATH165; PHYS151; PHYSL153 concurrently
3.00
This calculusbased course is the introduction of the topics of modern physics. It begins with special relativity, the Lorentz transformation, relativistic momentum and energy, addition of relativistic velocities, then covers early quantum theory, blackbody radiation, photoelectric effect, the Compton effect, photon interactions, pair production, and the Bohr theory of the atom. Then Schrodinger's equation is introduced with use of wave functions, particle box, barrier penetration, quantum mechanical tunneling, the Pauli Exclusion principle, the development of the periodic table, and the Xray spectra. Development of solid state physics with bonding in molecules, band theory of solids and semiconductor behavior. The final topics cover nuclear physics, radioactivity, halflife, nuclear fission and fusion, medical uses of radiation, elementary particle physics and introduction to astrophysics.
Offered Fall Term
SCI TECH ENGNR
PHYS153 concurrently
1.00
The laboratory consists of experiments to illustrate the basic concepts of special relativity, the Lorentz transformation, relativistic momentum and energy, addition of relativistic velocities, then covers early quantum theory, blackbody radiation, photoelectric effect, the Compton effect, photon interactions, pair production, and the Bohr theory of the atom.
SCI TECH ENGNR
Prerequisite: PHYS 151152
4.00
An introduction to the concepts and methods of astrophysics; including a history of astronomy from the ancients to Newton; light; telescopes; sun, earth, moon planets, comets, asteroids, meteors, space programs, science and technology in society. Astronomy of the cosmos; sun, stars, interstellar materials, galaxies, pulsars, quasars, black holes; nature of time relativity, cosmology.
Offered Fall Term
PHYS 152 ; MATH 265 which may be taken concurrently
4.00
Newton's laws of motion, projectiles, momentum, energy, conservation laws, oscillations, Lagrange equations, generalized momenta, central forces, orbits. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Fall Term
4.00
This course provides a mechanism for students to receive academic credit for engaging in research. A faculty member in the physics department will serve as the research advisor for each student. This faculty advisor will have the primary responsibility for overseeing each individual student's work and will decide the grade for the course. The research project may be initiated by the student or by a faculty member.
Offered Spring Term
PHYS153;
4.00
Topics include atoms and elementary particles, atomic, molecular and nuclear systems. Quantum states and probability amplitude, wave mechanics and thermal properties of matter. Atomic spectra and structure, and molecular systems. Nuclear reactions, alpha and beta decay and high energy physics. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Fall Term
PHYS152, PHYSL152, PHYS153, PHYSL153, and PHYS361
4.00
Macroscopic objects are made up of huge numbers of fundamental particles whose interactions are well understood. Physical properties that emerge from these interactions are, however, not simply related to these fundamental interactions. In this course we will develop the tools of statistical physics, which will allow us to predict emergent cooperative phenomena. We will apply those tools to a wide variety of physical questions, including the behavior of glasses, polymers, heat engines, magnets, and electrons in solids. Computer simulations will be extensively used to aid visualization and provide concrete realization of models in order to impart deeper understanding of statistical physics.
Take PHYS152 and PHYSL152
4.00
Electrostatic field energy, methods for solution of boundary value problems. The magnetostatic field and magnetic circuits. Electromagnetic field energy, plane waves, wave guides and cavity resonators. Interaction of charge particles with electromagnetic fields. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Fall Term
PHYS 451
2.00
Classical and modern experiments in physics; Experiments may include Frank Hertz experiment, Hall effect, nuclear magnetic resonance, quantum dots, detection of muons, xray spectroscopy, ellipsometry, physics of timbre of musical instruments, data acquisition.
Offered Fall Term
Prerequisite: PHYS 151152
4.00
An introduction to the concepts and methods of astrophysics; including a history of astronomy from the ancients to Newton; light; telescopes; sun, earth, moon planets, comets, asteroids, meteors, space programs, science and technology in society. Astronomy of the cosmos; sun, stars, interstellar materials, galaxies, pulsars, quasars, black holes; nature of time relativity, cosmology.
Offered Fall Term
PHYS 151 AND PHYS 152 OR PHYS 153.
2.00 3.00
The topics covered include theoretical foundations of observational astronomy, designs of telescopes, instrumentation for telescopes, data acquisition and management, as well as practical problems in observational astronomy. Offered together with the laboratory component PHYS L381.
Permission of Dept. Chair Required
1.00 2.00
The topics covered include theoretical foundations of observational astronomy, designs of telescopes, instrumentation for telescopes, data acquisition and management, as well as practical problems in observational astronomy.
BIO111 and PHYS213
4.00
The discovery of extreme environments and new insights into evolution, emergence and sustenance of life has expanded the view of life into a broader feasibility outside Earth. Discovery of exoplanets has opened up serious scientific exploration towards search for life in other planets. This upperlevel course will introduce the scientific principles that underlie this newly evolving science of astrobiology. Discussion will include unique perspectives in life at extreme environments within Earth and their implication to the concepts of evolution and origins of life that form the basis for better understanding the habitability within our planet as well as any possibility of life in other planets.
CHEM111 and CHEM112 OR PHYS111 and PHYS112
4.00
This course provides an overview of the chemical and physical properties of the material constituents of the Earth and terrestrial planets, including minerals, rocks, lavas, and supercritical water. Topics include mineral structure and composition, bonding, optical properties, xray diffraction, phase transformations, and surface properties. The physics and chemistry of energy materials, synthetic nanomaterials will be included with emphasis/focus on energy resources, environmental impact, and geopolitical implications. There are no mandatory prerequisites for this course, but students who have taken introductory chemistry and/or physics will be familiar with some concepts discussed, and will find the going easier. Some background in Earth science is assumed (at the level of PHYS213), and competence in basic chemistry is expected (some review will be provided where appropriate). The course is not mathematically intensive, but an appreciation of the fundamentals of calculus is important.
PHYS213
4.00
This course provides an overview of the chemical and physical properties of the material constituents of the Earth and terrestrial planets, including minerals, rocks, lavas, and supercritical water. Topics include mineral structure and composition,bonding,optical properties, xray diffraction, phase transformations, and surface properties. The physics and chemistry of energy materials, synthetic nanomaterials will be included with emphasis/focus on energy resources, environmental impact, and geopolitical implications. There are no mandatory prerequisites for this course, but students who have taken introductory chemistry and/or physics will be familiar with some concepts discussed, and will find the going easier. Some background in Earth science is assumed (at the level of PHYS213), and competence in basic chemistry is expected (some review will be provided where appropriate). The course is not mathematically intensive, but an appreciation of the fundamentals of calculus is important.
BIO111 and PHYS213
4.00
The discovery of extreme environments and new insights into evolution, emergence and sustenance of life has expanded the view of life into a broader feasibility outside Earth. Discovery of exoplanets has opened up serious scientific exploration towards search for life in other planets. This upperlevel course will introduce the scientific principles that underlie this newly evolving science of astrobiology. Discussion will include unique perspectives in life at extreme environments within Earth and their implication to the concepts of evolution and origins of life that form the basis for better understanding the habitability within our planet as well as any possibility of life in other planets.
MATH121 with a minimum grade of C, MATH075, or MATH level 5
4.00
Functions, limits and continuity, squeeze theorem, limits at infinity; instantaneous rate of change, tangent slopes, and the definition of the derivative of a function; power, product, and quotient rules, trig derivatives, chain rule, implicit differentiation; higher order derivatives; derivatives of other transcendental functions (inverse trig functions, exponential and log functions, hyperbolic trig functions); applications of the derivative (implicit differentiation, related rates, optimization, differentials, curve sketching, L'Hopital's rule); antiderivatives; indefinite integrals; Fundamental Theorem; applications (net change). 4 lecture hours plus 1 recitation session each week. Normally offered each semester.
MATH164 or MATH165 with a minimum grade of C
4.00
Riemann sums and definite integrals; Fundamental Theorem; applications (areas); integration of exponential functions, trig functions, and inverse trig functions; techniques of integration (substitution, by parts, trig integrals, trig substitution, partial fractions); area, volume, and average value applications; differential equations (separable, exponential growth, linear); improper integrals; infinite sequences and series; convergence tests; power series; Taylor and Maclaurin series (computation, convergence, error estimates, differentiation and integration of Taylor series). 4 lecture hours plus 1 recitation session each week. Normally offered each semester.
MATH 166 with grade of C or better
4.00
Parametric equations and polar coordinates (curves, areas, conic sections); vectors and the geometry of space (the dot product, vector arithmetic, lines and planes in 3space, the cross product, cylinders and quadratic surfaces); vector functions (limits, derivatives and integrals, motion in space); partial derivatives (functions of several variables, limits and continuity, tangent planes and differentials, chain rule, directional derivatives, gradient, extrema, Lagrange multipliers); multiple integrals (double integrals, applications); vector calculus (vector fields, line integrals, fundamental theorem for line integrals, Green's Theorem, curl and divergence, parametric surfaces, surface integrals). 4 lecture hours plus 1 recitation session each week. Normally offered each semester.
Take MATH121, MATH164, or MATH165 (previous or concurrent)
4.00
This is a rigorous introduction to computer science in Java with an emphasis on problem solving, structured programming, objectoriented programming, and graphical user interfaces. Topics include expressions, input/output, control structures, intrinsic data types, classes and methods, iteration, topdown programming, arrays, graphical user interfaces, and elements of UML. Normally offered each semester.
CMPSC F131
4.00
Computer Science II (CSII) is the continuation of Computer Science I. The purpose of CSII is to expand students' understanding of Computer Science and computer programming, assuming that they have the basic knowledge of the Java language. The course introduce another programming language  C  and also focuses on the pure ObjectOriented features of Java, such as inheritance, polymorphism, and exceptions, as well as on simple data structures (lists, stacks, and queues) and algorithms (searching and sorting). By the end of the semester students will be able to develop sizable (several pages long) computer programs in the C and Java languages. Efficient C and Java program development requires an Integrated Development Environment (IDE)  a collection of tools that make it possible to edit, compile, and debug C and Java programs. Our IDE of choice is Eclipse. Eclipse is free and available for many operating systems, including Microsoft Windows (all flavors), Linux, Unix, and Mac OS X.
Note: Please consult with physics advisor regarding elective choice, as several 200level or higher courses may not apply towards the elective credit requirement.
Must take BIO L111 concurrently
3.00
Explanation of key biological structures and reactions of the cell. This is an introductory course required of all biology majors and minors, and some nonbiology science majors. This course is not recommended for the nonscience student.
Offered Both Fall and Spring
SCI TECH ENGNR
Concurrently with BIO 111
1.00
Sessions are designed to familiarize the student with biological molecules, and the techniques used in their study. The techniques covered include basic solution preparation, separation and quantification of molecules, enzyme catalysis,and cell isolation.
Offered Both Fall and Spring
SCI TECH ENGNR
Placement at MATH 104 or better. Students who do not place at MATH 104 must take MATH 104 concurrently. Must be taken concurrently with CHEML111.
3.00
Fundamental principles of chemistry are discussed. Introduces atomic structure, stoichiometry, the periodic table, the nature of chemical bonds, and chemical reactions. This course is recommended for science majors or those considering careers in the health sciences.
Offered Both Fall and Spring
SCI TECH ENGNR
MATH104 MATH108 MATH121 MATH128 MATH130 MATH134 MATH164 MATH165 MATHTMPEL1 MATHTMPEL2 or MATHTMPEL3. Must be taken concurrently with CHEM 111.
1.00
Introduces the basic principles of chemistry through discovery laboratory experiments. Learn safe laboratory practices and basic techniques such as determining mass and volume, representing data in the form of tables and graphs, and synthesizing and isolating a metal complex. Participate in workshop activities that include understanding modern approaches to the scientific method, reading and understanding the scientific literature, and building molecular models. This laboratory is designed around the foundational laboratory skills practiced by science students in a wide variety of majors.
Offered Both Fall and Spring
SCI TECH ENGNR
CHEM 111/L111; CHEML112 must be taken concurrently. MATH 104 placement or higher.
3.00
This course is a continuation of General Chemistry I. Fundamental principles of chemistry are discussed. Introduces thermochemistry, gases, solution chemistry, chemical kinetics, chemical equilibrium, acidbase systems, and thermodynamics.
Offered Both Fall and Spring
CHEM111/L111; CHEM112 must be take concurrently. MATH104 placement or higher.
1.00
This course is a continuation of General Chemistry I Laboratory. Apply the basic principles of chemistry through discovery laboratory experiments with an emphasis on quantitative analysis. Execute basic analytical techniques such as the application of Beer's Law and acidbase titrations. This laboratory is designed around the foundational laboratory skills practiced by science students in a wide variety of majors.
Offered Both Fall and Spring
To complete requirements for honors in the major, a candidate must:
Take PHYS153; Honors students only.
2.00 4.00
Special topics not covered in other 300/400level physics courses. Topics can range from General Relativity to Relativistic quantum mechanics, depending on student interest.
Honors
The Suffolk University Chapter of the National Society of Physics Students was established in 1979. Election to Sigma Pi Sigma membership is conducted by the active Sigma Pi Sigma members. To be eligible, a student does not have to be a Physics major but must rank in the upper 20% of his/her class, have a minimum cumulative grade point average of 3.0, and a Physics grade point average of 3.3.
The Society of Physics Students (SPS) is the student wing of American Institute of Physics (AIP). As a professional student association, it is focused on helping students develop the wellrounded skillset needed to succeed beyond the classroom. The Suffolk University chapter is open to any Suffolk student interested in physics. This network connects students across 200 colleges nationwide, many of which are right here in Boston. SPS provides and supports opportunities for students to develop professionally by attending conferences and workshops, organizing conferences, and participating in internship programs. It recognizes the need for students to develop leadership skills and experience in science outreach activities while they are in an undergraduate program.
The SPS helps students become contributing members of the professional community. Course work develops only one range of skills. Other skills needed to flourish professionally include effective communication and personal interactions, leadership experience, establishing a personal network of contacts, presenting scholarly work in professional meetings and journals, and providing outreach services to the campus and local communities.
*Students must meet with their advisor regarding approved requirements and electives.
The Physics major aims to provide the student with a broad understanding of the fundamental principles of physics, to help them develop critical thinking and quantitative reasoning skills, and to give them significant training that transform them into contributing members of the professional community of physics and, more broadly, physical sciences, including those whose interests lie in research, K12 teaching, industrial jobs, or other sectors of our society.
Learning goals and objectives reflect the educational outcomes achieved by students through the completion of this program. These transferable skills prepare Suffolk students for success in the workplace, in graduate school, and in their local and global communities.
Learning GoalsStudents will… 
Learning ObjectivesPhysics students will be able to… 
Acquire knowledge of physical principles. 

Acquire scientific and professional skills. 

Effectively pursue career objectives. 
